Boka en demo

Välj en eller flera tjänster nedan.
Lämna ditt telefonnummer här så kontaktar vi dig för en demonstration av vad Kundo kan göra för din organisation.

KI for kundeservice? Fire spørsmål du bør vite svaret på!

4 mars, 2019

KI (Kunstig Intelligens) er uten tvil en av de heteste teknikktrendene for 2019. KI-trenden lover automatisering, effektivisering og smarte tjenester for så vel konsumenter som bedrifter. Kundeservice er en av bransjene som sies kunne revolusjoneres av KI.

Som med alle hete nyheter, råder det selvfølgelig en hel del usikkerhet og begrepsforvirring. Vi håper derfor at du, med hjelp av spørsmålene nedenfor, enklere skal kunne svare på om KI kan brukes i din kundeservice. Slik blir du bedre rustet innen møter med systemleverandører som lover funksjoner basert på KI og maskininnlæring.

Forstår vi begrepene?

Kunstig intelligens er et veldig allment begrep som beskriver en datamaskins mulighet til å ta intelligente beslutninger på egen hånd. KI ligger stort sett fortsatt på forskningsstadiet. Når leverandører snakker om at de har system for KI, er det derfor viktig å forstå innenfor hvilket delområde det gjelder, og hvilke kompetanser og begrensninger systemet har. Dagens KI-system jobber med den teknikken som kalles maskininnlæring. Det går ut på at et dataprogram kan lære seg visse mønstre gjennom å studere store menger data. Disse innlærte mønstrene kan så brukes for å, for eksempel, svare på enkle spørsmål innenfor avgrensede områder, eller automatisk kategorisere eller ta beslutninger i gitte situasjoner.

Vi anbefaler at du leser den korte introduksjonen til KI for kundeservice som Kundos produktsjef Emil Stenström har skrevet.

Hva er vårt mål?

Vel innsatte i begrepene kan vi begynne å fokusere på målene våre.

  • Er vår første prioritet å holde nede antall innkommende saker?
  • Vil vi skape en moderne kundeopplevelse og høy kundetilfredshet?
  • Vil vi effektivisere spesifikke og tidskrevende prosesser?

Om din første prioritet er å holde nede antall innkommende saker, blir chatbots og lignende løsninger det som bør undersøkes nærmere. Dette er også det området der det råder størst begrepsforvirring og ”hype” innenfor KI. I dag fins det i hovedsak to ulike slags chatbots:

  • Chatbots som baserer seg på maskininnlæring: Disse krever i dag store mengder eksisterende data for å kunne trenes opp til å gi korrekte svar. Og også da kommer de bare kunne svare på de aller enkleste spørsmålene.
  • Chatbots som baserer seg på beslutningstre: Disse bots bruker faktisk ikke KI, men stoler helt på innprogrammerte beslutningstrær, der kunden troligvis velger delområde gjennom å klikke seg fram, eller gjennom å skrive enkle ord som boten oversetter til rett kategori.

Begge disse løsningene innebærer kraftige begrensninger og kan lede til stor frustrasjon for kunden, men de kan selvfølgelig også effektivisere en kundeservice som er under stor belastning. Vi anbefaler derfor bare disse løsningene dersom effektivisering er den ene, høyeste prioriteten. Be alltid om å få prøve de systemene som leverandørene viser for å forstå systemenes kapasitet og begrensninger, og ikke bare se de tilrettelagte eksemplene som leverandøren kommer vise.

Disse innsiktene betyr også at organisasjoner som prioriterer kundetilfredshet høyt kanskje bør vente ytterligere noen år med alle typer av system som plasserer KI mellom dere og kunden.

Hvilke prosesser vil vi forenkle?

Ytterligere et mål kan som sagt være å forenkle og effektivisere de prosesser som i den daglige kundeservicen kommer igjen og igjen. Her har maskininnlæring et stort potensial for å forenkle for oss mennesker. Man kan for eksempel tenke seg at automatisk foreslå ferdige løsninger for en kundeservicemedarbeider: Kategorisere saken, hvem den bør tildeles eller hvilket standardsvar som er det mest passende. Ved å tilby en snarvei for å gjennomføre den foreslåtte løsningen, kan mengden klikk og hodebry minskes!

Dette er det området der maskininnlæring har størst potensial. Se derfor etter verktøy med denne typen smarte funksjoner som baseres på maskininnlæring.

Hva bør det koste?

System for chatbots og maskininnlæring er i dag ganske dyre. Foruten kostnaden for selve produktet og implementeringen, fins også ytterligere kostnader og risikoer forbundet med for eksempel chatbots:

  • De må trenes: Før en chatbot kan fungere, må den trenes opp på eksisterende data. Dette er en jobb i starten, men også et løpende kvalitetssikringsarbeid for å korrigere og lære inn nye kunnskaper. Dette krever ofte teknisk hjelp fra egne eller leverandørens utviklere.
  • Som vi har beskrevet ovenfor, innebærer systemene ofte en ekstra barriere for kundene, særlig under innkjøringsperioden. I hvilken utstrekning er dere beredte til å kompromisse med kundetilfredsheten?

Har vi nok data?

For at maskininnlæring skal fungere bra kreves store mengder data for å trene opp systemet.

Hvor mye data som kreves kommer selvfølgelig an på kompleksiteten i de oppgaver som skal gjennomføres. Generelt behøves flere tusen eksempel på lignende spørsmål for at systemet skal kunne opptre rimelig korrekt.

Om systemet bare skal gjøre en manuell prosess raskere (for eksempel kategorisering av saker), gjør det ikke like mye om det blir feil i blant. Dette siden det er lett for en dyktig medarbeider å gjøre en manuell korrigering. Her er til og med en 60% korrekt algoritme en tydelig forbedring.

I direkte kunderelasjoner er det derimot viktigere at det blir rett, og da kreves ytterligere treningsdata. Kanskje vi kan bare akseptere en feilmarginal på et par prosent for når en chatbot interagerer direkte med kunden?

Vår erfaring tilsier at de fleste organisasjoner mangler de store volumene av treningsdata, man at man på sikt kan bygge opp en nøyaktighet som absolutt er tilstrekkelig for å jobbe med den type funksjoner som underletter medarbeidernes hverdag med hjelp av maskininnlæring.

Vil du vite mer?

Last ned og se Kundos populære webinar om AI og kundeservice når det passer deg. Der får du høre Kundos produktsjef Emil snakke mer om begrepene AI, maskininnlæring og smarte charboter. Hva er forskjellene? Hvordan fungerer det egentlig?

Se Kundos webinar om AI og kundeservice.

 

Lignende blogginnlegg

    New call-to-action